*
ol
A
/o
DEFENCE
SCIENCE & TECHNOLOGY

Situation Description Language
Implementation

S. Greenhill and S. Venkatesh and
.. A Pearce and T.C.Ly

DSTO-GD-0342

DISTRIBUTION STATEMENT A
Apprpved for Public Release
Distribution Unlimited

20030320 106

* A %
A
/o
DEFENCE
SCIENCE & TECHNOLOGY

Situation Description Language Implementation

S. Greenhill and S.Venkatesh

Curtin University of Technology

A. Pearce

University of Melbourne

T.C. Ly

Maritime Operation Division

Systems Sciences Laboratory

DSTO-GD-0342

ABSTRACT

SDL is a Situation Description Language intended for use in situation as-
sessment problems. SDL provides knowledge modelling and inference facilities
for reasoning with information.

This document describes a portable implementation of SDL in Java. It
provides information required by a user of the system. Details include the
operation of the compiler, the use of temporal knowledge and inference, and use
of the visualisation system. This report also provides implementation details
necessary for modifying or extending the system. A detailed example describes
how the system was used for submarine situation assessment.

APPROVED FOR PUBLIC RELEASE

AD €03-06- 1403

DSTO-GD-0342

Published by

DSTO Systems Sciences Laboratory
PO Boz 1500
Edinburgh, South Australia, Australia 5111

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

© Commonuwealth of Australia 2002
AR No. 012-486
November, 2002

APPROVED FOR PUBLIC RELEASE

DSTO-GD-0342

Situation Description Language Implementation

EXECUTIVE SUMMARY

Situation assessment is an essential process prior to making a decision. On submarines
and other military platforms the operators take information from available sensors and
their background knowledge to deduce the tactical situation. Designing systems to repli-
cate this process will give a better understanding of the process itself, and opens the
possibility of automating the tasks that computers perform better. The process is infor-
mation intensive, requiring a high level language with concepts like those found in the field
of artificial intelligence. The development of the Situation Description Language (SDL)
brings together various techniques useful for representing the assessment process. The
realisation of SDL provides an actual working language that not only encodes the process,
but enacts it.

This report describes how the SDL was implemented as a compiler and interpreter
under Java, which will be referred to as a Situation Assessment Processor (SAP). As a
Java program it is portable on any platform on which a Java virtual machine exists. The
core of implementation makes use of the RETE algorithm to ensure efficient processing
of rules. The temporal reasoning allows data to be associated with a precise time, or at
some abstract point on the timeline.

Concepts that are important to a domain only become clear after obtaining a detailed
understanding of the domain from experts. The SAP leverages Java to.allow seamless
integration of new objects on top of existing SDL featues. These objects will embody
those new concepts. For example, spatial objects and their operations are concepts that
were added to SDL this way.

The resultant situation assessment can be sent to third party software. A subscription
mechanism exists to ensure only the required information reaches the third party software,
and not swamp it with unnecessary information. Alternatively, results can be displayed
using the integrated visualisation facilities. These facilities allow displaying of spatial
information, and temporal information as it is created. Having experts view the encoded
expertise in action enables them to give feedback as to the validity of the encoding.

The SAP was demonstrated by encoding a limited Submarine Situation Assessment.
It shows how SDL was able to encode the required temporal and non temporal knowledge,
and the rules that manipulate this knowledge. It also shows how multiple hypotheses
enable different interpretation of a situation by varying the assumptions.

iii

DSTO-GD-0342

iv

DSTO-GD-0342

Contents

1 Overview 1
2 Using the Compiler 1
3 Java Interface 4
4 Interpreter 6
5 The System object 7
6 Temporal Knowledge 8
7 Inference System 10
71 Rulerewriting 12
711 Eventrules 12

72 Temporal reasoninginrules 13

8 Standard Packages 14
8.1 The Visualisation System 14
8.1.1 SDL.SpatialViewInterface 15

8.1.2 SDL.TemporalViewlnterface 18

8.1.3 SDL.MainViewlnterface 20

8.1.4 SDL.NavigatorInterface 23

8.1.5 SDL.ObjectViewInterface 24

9 Notification 24
9.1 Representation of SDL values 25

9.2 Notification Requests 26

10 Example-Sﬁbmarine Situation Assessment 29
10.1 Overview e 29
10.2 Knowledgebase, 30
103 Rulebase [P 30
10.3.1 Reasoning with contacts 30

10.3.2 Reasoning within hypothesis 32

DSTO-GD-0342

10.4 Creating and terminating hypothesis 33
10.5 Entering datainto SAPo . 35
10.6 Situationsnapshot 36
11 Conclusion 36
References 39

vi

[

© 0w N S Ut A

DSTO-GD-0342

Figures

Sample spatial display comprising two layers. 15
Sample temporal display showing three intervals and two instants. 19
Sample main view showing spatial display (top left), temporal display (top

right) and object display (bottom). 21
Structure for storing background information about vessels of interest. 31
Structure for storing sensory information. 32
Spatial disposition of entity with known position. 37
Associate new contact as lost submarine. L. 37
Associate new track as lost warship. 38
Associate new track as new unknownentity. 38
New information remove warship as viable hypothesis. 39

vii

DSTO-GD-0342

1 Mappings for SDL values . . .

2 Syntax of Notification requests

viii

Tables

..........................

DSTO-GD-0342

1 Overview

This document describes the implementation of SDL, a Situation Description Lan-
guage'. The needs for SDL came after looking at what was available at the time [4]. SDL
is a language intended to model knowledge within simulation environments, and provide
a framework for reasoning with this information. A companion document gives a formal
definition of the language [5].

It includes:

o Object-oriented data modelling with support for type-bound procedures and single-
inheritance.

e A forward-chaining inference system with RETE-based pattern matcher.

A procedural programming system loosely based on the language Oberon-2.

Representations for time and space.

Representations for uncertainty, including a system for handling multiple concurrent
hypotheses.

Parameterised types for sets and sequences.

SDL is currently implemented as a compiler and interpreter written in the Java lan-
guage. Source code written in SDL is compiled to a form of abstract syntax tree which
is interpreted to run the program. SDL programs can call methods of Java objects; the
compiler dynamically loads Java classes as required by SDL programs.

SDL is a strongly typed language so many semantic errors can be identified in the
compilation phase. A program is only executed after being successfully compiled. If run-
time errors occur during execution, the program halts with a description of the error and
shows the location in the source code and the state of program variables.

2 Using the Compiler

The SDL system includes both a compiler and interpreter. The compiler is invoked
using the command:

java SDL.Comp {options} {sourceFiles}

One or more source files may be given. The system searches for imported modules
within the directory of the importing module. There are two situations where input may
be read from objects other than files: standard input and named pipes. In these cases,
imported modules are taken from the current directory. The file name stdin causes input

!SDL not related to the “Specification and Description Language” SDL standardized as ITU (Interna-
tional Telecommunication Union) Recommendation Z.100

DSTO-GD-0342

to be read from standard input. A file name beginning with the pipe prefix (\\.\pipe\
under Windows) is treated as a named pipe.

Currently, the following options are supported, mainly for debugging purposes:

-n Enable RETE Network view. This option causes SDL to open a window showing a
graphical view of the RETE network resulting from compiling rules. The user may
click on the nodes to discover the attributes of nodes, and any tokens in the node
output set.

~tactiv Traces the activation of rules. Rule firing is initiated by System.Run, but rules
may be activated / deactivated many times outside of an inference cycle. This feature
allows the user to determine when a rule is activated / deactivated in response to
USER statements.

-tfire Traces the firing of rules. During System.Run, the system fires rules from a set
of active rules until no further active rules remain. With this option enabled, the
system outputs the rule name and token associated with each rule firing.

-tsimple Use simple time model (see section 6).
-ttime Reports the run-time for each USER statement.
-tresolve Traces binding resolution in the RETE compiler.
-tapply Traces application of tests at each node in the RETE network.
-tprop Traces propagation of tokens into each RETE network node.
~-tgraph Trace temporal graph operations.
~-thypothesis Trace hypothesis cloning.
-timport Show Java class imports.
-s Prints the compiler scope before terminating.
-h Shows a list of options.
SDL includes USER declarations, which identify statements that are issued interactively

by the user. Each statement in a USER declaration is executed immediately before the next
statement is compiled.

Example:

java SDL.Comp stdin

USER

PRINTLN 1 + 2 * 3 + 4;
>11

PRINTLN "Hello " + "There";
> Hello There

PRINTLN SIZE("Hello " + "There");
> 11

END.

DSTO-GD-0342

The USER statement allows interactive statements to be used with pre-compiled code.
For example:

java SDL.Comp test/sieve.sdl stdin
USER

PRINTLN Primes();
> stdin:2,15: Cannot find matching procedure declaration : Primes
> stdin:2,16: Designator has no return type :
PRINTLN Primes(20);
> {13, 11, 7, 5, 3, 19, 2, 17}
PRINTLN IntRange(1, 20);
> {20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}
PRINTLN IntRange(1,20) - Primes(20);
> {20, 18, 16, 15, 14, 12, 10, 9, 8, 6, 4, 1}
END.

The SDL system includes a simple debugger that shows the state of the program when
a run-time exception occurs. For example, the following program contains an error.

MODULE Errori;

TYPE
T = RECORD x : INTEGER END;

VAR
t : T;

PROCEDURE (t : T) Put(x : INTEGER);

BEGIN
t.x := 100 DIV x; (* ERROR when x = 0 *)
t.Put(x-1);

END Put;

BEGIN
t := NEW T(:x 1);
t.Put(3);

END Errorl.

The procedure Put is called recursively and will eventually cause a divide-by-zero
exception. Running the program causes the following:

java SDL.Comp test/Errorl.sdl stdin

PROCEDURE Put (Errori.sdl:14,11)
t = T(:x* 100, :tag TO)

DSTO-GD-0342

x =0
PROCEDURE Put (Errori.sdl:14,11)
t = T(:x* 100, :tag TO)
x=1
PROCEDURE Put (Errori.sdl:14,11)
t = T(:xx 100, :tag TO)
x =2 ‘
PROCEDURE Put (Errori.sdl:19,9)
t = T(:x* 100, :tag TO)
x=3
GLOBAL VARIABLES
System = SDL.SystemObject@297b0b
MODULE Erroril
t = T(:xx 100, :tag TO)

Run Time Error: Division by zero (Errori.sdl:13,18)

10:

11: PROCEDURE (t : T) Put(x : INTEGER);

12: BEGIN

13: t.x := 100 DIV x; (* ERROR when x = 0 *)
————— -~ Division by zero

14: t.Put(x-1);

15: END Put;

16:

Processing stdin

SDL prints a back-trace showing the values of global variables and local variables in
each procedure activation. It also gives the approximate source location where the error
occurred. In the example, Errori.sdl:13,18 means column 18 of line 13 of the file
Errori.sdl.

This debugger is intended to allow errors to be easily located. When a run-time error
occurs execution stops. Any active procedure activation records are removed from the
stack, but global variables and objects are unaffected. In an interactive session, the user
may continue using the system following a run-time error, although the system state may
not be well-defined.

3 Java Interface

Java provides a standard “reflection” service which enables a program to inspect its
own type system at run-time. The SDL compiler uses the java.lang.reflect services to
dynamically load Java classes and to generate SDL bindings for Java types and methods.

Java classes can be used within SDL with the following restrictions:

DSTO-GD-0342

¢ Only Java class methods are available. It is not possible to use static procedures, or
variables.

e Exceptions are not supported. If a Java class method throws an exception, the
program will be terminated.

o A restricted set of types are available. Java types that correspond directly to SDL
types may be used. Currently, SDL does not support any methods that would require
translation of values at run-time.2

The table below shows the correspondence between SDL types and the allowed types
in Java methods. Note that arrays are not supported.

Java Type SDL Type
int, or java.lang.Integer INTEGER
java.lang.String STRING

boolean, or java.lang.Boolean | BOGLEAN
double, or java.lang.Double REAL
Object type T JAVA T

Internally, SDL uses Java interfaces to provide some of its services. These include:

e The System object (see 5).

e Some primitive data types. These include SPATIAL (SDL.SpatialObject), POINT
(SDL.SpatialPoint), LINE (SDL.SpatialLine), and Hypothesis (SDL.Hypothesis).

There are a few differences between the type systems of SDL and Java that can affect
the usefulness of Java interfaces. Some SDL constructs have no corresponding equivalent
in Java, so it will not always be possible to obtain the desired method signature in a pure
Java declaration. For example, SDL has a parametric SET type whereas Java sets have a
single member class java.lang.0Object.

One way around this problem is to use SDL HINT declarations. These inform the SDL
compiler of the correct interpretation for methods. For example:

HINT SDL.SpatialLine (Intersect) : SET OF SPATIAL;

This informs the SDL compiler that the return type of the Intersect method of
the SDL.SpatialLine class is SET OF SPATIAL. Without this declaration, the result type
determined from the method signature would be java.util.Set.

Currently the HINT mechanism is restricted to return type declarations, although it
could usefully be extended to handle the whole method signature including method pa-
rameters.

The following example illustrates the use of Java classes within SDL code.

“Translating values at run-time could be implemented, but would incur a performance penalty. Inter-
nally SDL uses java.lang types for its own primitive types so it is currently not necessary to translate any
values in order to call a Java method.

DSTO-GD-0342

PROCEDURE FetchURLString (name : STRING) : STRING;
(* Attempt to fetch data from URL <name>. The resulting text is returned
* as a STRING *)
TYPE
StringBuffer = JAVA java.lang.StringBuffer;
InputStream = JAVA java.io.InputStream;
URL = JAVA java.net.URL;

VAR
i : InputStream; (* input from server)
¢ : INTEGER; (* character read from input *)
s : StringBuffer; (* result string *)

BEGIN

(* open stream of input from URL *)
i := NEW URL(name) .openConnection() .getInputStream();
s := NEW StringBuffer();

(x fetch data from the stream, and append to string *)
¢ := i.read();
WHILE c # -1 DO

s := s.append(CHR(c));

¢ := i.read()
END;
i.close();

RETURN s.toString();
END FetchURLString;

4 Interpreter

SDL compiles source code to a form of abstract syntax tree. Each node in the tree
contains:

o Enough semantic information to interpret each statement at run-time.

o References to the source code context so that accurate debugging information can
be given if errors occur at run-time.

SDL.Node is the abstract root class for all tree nodes. This class contains a source
token reference and some exception handling.

SDL.Expr is an abstract subclass of SDL.Node which encodes all language constructs
that return values (eg. expressions, operators, function calls). Every SDL.Expr has a
result type, and an evaluation function:

abstract Object Eval(Env e) throws RunTimeError;

DSTO-GD-0342

To evaluate an expression, the interpreter calls Eval passing an environment of type
SDL.Env. The environment represents all context information. This includes:

e Global variables.

e Local variables and parameters represented using a stack of procedure activation
records.

e Results of procedure RETURNSs. The expression that calls a function is generally
not the parent of the expression that returns the function result (eg. a RETURN
may be nested in several levels of iteration). These intermediate activations must
be unwound so that the return value can be propagated. State variables in the
environment control this process.

e Pattern bindings. Expressions that occur in rules contain references to symbols
that designate pattern variables. These expressions are only evaluated during token

propagation.
e The temporal graph.

e Any information that controls the results of expression evaluation. In particular,
state information is maintained to support the UPDATE statement.

SDL.Stat is an abstract subclass of SDL.Node which encodes all language constructs
that do not return values (ie. statements).

abstract void Exec(Env e) throws RunTimeError;

SDL.Stat .Exec is similar to SDL.Expr.Eval except that it does not return a result.

The interpreter can be extended to handle new language constructs. The general
procedure is:

1. Implement one or more subclasses of SDL.Expr or SDL.Stat to handle the semantics
of the construct at run-time.

2. Implement one or more procedures within SDL.Compiler to create tree nodes after
checking for correct semantics.

3. Adjust the attributed grammar SDL.atg to parse language statements. Generally,
code in SDL.atg should be as simple as possible; any complex code should be in
SDL.Compiler.

5 The System object

Some system-level functions are exposed via the System object. This is a pre-defined
object implemented in SDL.SystemObject. Important functions are:

DSTO-GD-0342

System.Run() This activates the inference system, which will continue activating rules
until no further rules are satisfied.

System.Stats(level) Prints run-time statistics, including the number of rules activated
/ deactivated, and the number of objects created / deleted. If 1evel=0, just summary
information is printed. If 1evel=1, detailed (per class / rule) information is printed.

System.ShowEnv() Prints the system execution context. This includes the values of
global and local variables. This may be called during a procedure to help debug the
context of the procedure call without halting the program.

System.GC() This calls the system garbage collector. This is not normally required, but
may be useful during debugging.

System.MainView() This creates or returns the main system viewer, an object of type
SDL.MainViewInterface (see 8.1.3).

System.TestInit() This initialises the notification system (see 9) for test output. No-
tification messages are sent to System.out.

System.DMarsInit () This initialises the notification system to use an agent within the
DMars system. Note the dMars host parameters are defined in SystemObject. java.

System.Notify() This notifies a client of the current state of the system. Any registered
events will be sent to the client, and the client may issue queries to SDL.

System.Active("rule") displays active bindings for the named rule.

System.Active("") displays active bindings for all rules. Both this and the above form
display bindings for all activation tokens: those that have and have not been used
to fire the rule.

System.Active("rule",false) displays only those bindings that have not already fired
?f the rule.

6 Temporal Knowledge

The SDL system handles time in two ways. Precise times may be represented using
REAL/INTEGER values. Imprecise or qualitative temporal knowledge may be repre-
sented using abstract points in time. A temporal constraint is a relationship between
points in time.

The SDL temporal representation corresponds to a simple temporal problem (STP) [2].
In this representation, a set of variables X}, ..., X,, represent points in time. A constraint
is an edge E;; labelled by an interval [a;;, b;;], which represents the constraint:

aij < Xj — Xi < by

DSTO-GD-0342

Alternatively, the constraint may be viewed as a pair of inequalities:

Xj — X
Xi—Xj

< by
< agj

The solution to a STP can be constructed by applying Floyd- Warhsall’s all-pairs-
shortest-paths algorithm. This algorithm runs in time O(n3®) and detects inconsistencies
in the constraint network. This computes the minimal a;; and b;; for all 1 <i,j < n.

Generalised temporal constraint satisfaction problems (TCSP) allow edges to be la-
belled by several intervals. These are currently not handled by SDL. The solutions to
TCSP are well described [2], but are known to be NP-hard.

The need to handle hypotheses introduces some complexity into the SDL temporal
model. Each hypothesis corresponds to a possible world in which a set of hypothetical
objects exist. The temporal model includes one STP that expresses constraints between all
non-hypothetical points in time. This is called the root partition and includes the variables
X(0); and edges E(0);;. In addition, each hypothesis introduces its own variables X (k);
and edges E(k);;. For each hypothesis k, there is a corresponding STP defined by variables
X(0) U X (k) and edges E(0) U E(k). If there are m hypotheses, there are m + 1 STPs.

In the current implementation, SDL checks for consistency of its temporal knowledge
base whenever temporal assertions are added. Addition of assertions within hypotheses
therefore require the solution of one STP. Addition of non-hypothetical assertions require
the solution of m STPs.

Possible future optimisations are:

e Defer the checking of consistency on addition of edges. This reduces the ability to
localise inconsistencies (ie. to determine which statement caused an inconsistency)
in favour of better performance.

e Compute solutions incrementally. If a solution already exists it is possible to compute
an amended solution in less time than it takes to recompute a full solution.

In situations where only precise temporal knowledge is used, SDL provides a “simple”
temporal model. This mode is used when the compiler is invoked with the “simple”
option. Restrictions in the simple model are:

e Only the following constraints are allowed:

HAPPENS AT
STARTS AT
ENDS AT

Temporal node properties are unified when AT constraints are asserted. At least one
of the constrained nodes must have a defined absolute time.

DSTO-GD-0342

10

o Other constraints are not allowed; asserting these constraints generates a run-time
exception. No system constraints are asserted (eg. end of interval occurring after
start of interval).

Temporal queries on unconstrained nodes return FALSE (as in normal temporal
model). REL applied to unconstrained node throws run-time exception.

Constraints are not propagated (other than AT) and the distance matrix is never
computed. Since this process is O(n?) space and O(n?) time, the result is significantly
faster.

In addition to simpler TemporalGraph operations, the simple model also affects
how temporal changes are propagated. In the normal temporal model, temporal
assertions about an event may affect the relationship between any other temporal
points, so knowledge about all events must be invalidated when an assertion is made.
In the simple model, this does not occur. Only the object that is the subject of the
assertion is invalidated. This greatly reduces the “inference load” resulting from
temporal assertions. Note: a better approach would be to determine which points
have changed relationships, but this optimisation has not yet been implemented.

7 Inference System

The SDL system includes a forward-chaining inference system based on the RETE
algorithm [3]. RETE is a generalised algorithm for systems that must match many objects
against many patterns.

e RETE avoids iterating over objects. A naive approach to pattern matching com-
pares each object with a pattern to determine which objects match. RETE avoids
this iteration by storing with each pattern a list of objects which match the pattern.
The lists are updated when objects change.

o RETE avoids iterating over patterns. A pattern is a set of conditions which are
logically combined. RETE avoids iterating over patterns by decomposing a set of
patterns into a network in which each element is represented only once, and is shared
between all instances of patterns containing that element.

The SDL RETE implementation is based on that described by Forgy for the OPS5
production system [3]. Similar methods are used in the CLIPS expert system shell [1],
and in many commercial systems. One limitation of the OPS5 and CLIPS approaches
is that they only allow left-associative joins in patterns. Later generalisations of OPS5
have relaxed this restriction, but introduces some complexities into the management of
the RETE network at run-time.

SDL handles generalised RETE nets (permitting both left- and right-associative joins)
and uses techniques outlined by Lee and Schor [7}.

Readers are referred to the literature for further details of RETE implementation.

DSTO-GD-0342

There are six different types of nodes in an SDL RETE network. Tokens are pushed
into the top nodes of the RETE network. When a token influences the result set of a node,
it is propagated to its successor nodes. “Join” nodes involve relations between two or more
objects. The outputs of join nodes are composite tokens that are the concatenation of their
inputs. In this way, tokens flow down the network until they ultimately reach an activation
node. Tokens grow longer as more objects are involved in the specification of a pattern.
Each rule in the SDL system has a single activation node which is associated with a series
of statements to be executed by that rule.

CLASS nodes. These nodes are the root nodes for patterns. Every SDL record type
that occurs in a rule has an associated CLASS node. When changes occur to record
values, a “Remove” token is first propagated to remove any activations associated
with the old value of a record. Then, an “Add” token is propagated to reflect the new
value of the record. The output token set of a CLASS node is the set of instances
of the class.

ALPHA nodes. These nodes are used to evaluate conditions that apply within a pattern.
Such conditions can be evaluated without reference to other patterns. ALPHA nodes
always have CLASS nodes as inputs. The RETE compiler merges all conditions
occurring in multiple rules so that they are only evaluated once for a given record
value. The output token set of an ALPHA node is the set of input tokens (class
instances) that match the associated conditions.

BETA (join) nodes. These nodes evaluate conditions that apply between patterns. A
BETA node involves a relationship between two nodes. Its output tokens are con-
catenated pairs of input tokens that match the associated conditions. In general,
each pattern in a rule involves a corresponding BETA node.

ELEMENT nodes. These nodes expand attributes of token elements that have multi-
ple values (eg. SET, SEQUENCE, or POTENTIAL values). An ELEMENT node
propagates a token for each member of a multi-valued attribute that matches the
associated conditions.

NOT nodes. These nodes are specialised join nodes to handle negated patterns. For each
left token it maintains a count of how many right tokens allow a match based on the
associated conditions. When the count is zero, the left token is added to the output
set. When the count becomes non-zero, the left token is removed from the output
set. This is normally trigger by the addition of tokens to the right input.

ACTIVATE nodes. These nodes are terminal nodes in the RETE network. Each AC-
TIVATE node is associated with the statement body of a rule. The output of the
predecessor of an ACTIVATE node is the set of tokens that may activate the rule.

The inference system is invoked by System.Run(). The current rule scheduler
(SDL.Compiler.FireRule) simply searches for the first rule node that has an unused token
in its activation set. It marks the token as used, and then executes the associated rule
body using the token for pattern bindings. This process continues until no rule has an
unused token in its activation set.

11

DSTO-GD-0342

The implication of this scheduling strategy is that a rule only fires once for each set of
records that match the pattern. If a record involved in a pattern changes, the rule may
fire again even if its satisfiability has not changed. This is because any change to a record
involves a retraction of all information about the record. Conversely, if a rule involves
negation it may only fire again if the satisfiability of the negation has changed. This is
a result of RETE semantics, and similar behaviour is seen in other RETE-based expert
systems like CLIPS[1], and JESS[6].

7.1 Rule rewriting

SDL employs a two-stage rewriting process when compiling rules. In the first phase,
OR operations are replaced by negated ANDs. Thus:

AI|B

becomes
~ ("A & "B)

In the second phase, negated conditions are rewritten as NOT-join nodes. If the
negation appears on the right hand side of an AND condition, the BETA node is trivially
converted to a NOT node. If the negation appears on the left hand side of an AND, or
the negation is a singleton condition in a rule, the system generates a NOT-join node with
the negation on the right and with a dummy pattern (of type InitialCondition) on the left
hand side.

7.1.1 Event rules

Event Rules are constructed from EVENT pattern condition, a WHEN condition, an
optional ACTIVE clause and an optional INACTIVE clause. Event rules are implemented
as a pair of Forward rules.

L RULE Name
‘ EVENT
Pattern
WHEN
Condition
END Name;

becomes:

RULE AssertName
IF
5 Condition & ~ Pattern

12

DSTO-GD-0342

THEN
CREATE Pattern
END AssertName;

RULE RetractName

IF

Pattern p & ~ Condition
THEN

DELETE p;

END RetractName;

When the Pattern is created, bindings from the WHEN condition are used. If no
bindings exist (eg. for a negated condition) an error is signalled.

The ACTIVE/INACTIVE clauses are used to establish temporal constraints on the
event as the event is activated / de-activated. ACTIVE constraints are asserted after the
object is created in the Assert rule. INACTIVE constraints are asserted before the object
deactivated in the Retract rule.

There are two types of events: persistent and non-persistent. Deactivation of events
is handled differently for these types. Non-persistent events are DELETEd when the
retraction rule fires. Persistent events are not DELETEd, but are made “inactive” meaning
that they can no longer fire their EVENT Assert/Retract patterns, but may match other
rules. In particular, they may be used in temporal constraints to allow the system to
reason about the past.

Persistent events are implemented by adding an “active” field to the EVENT object.
This field is initialised to “TRUE” when the object is created. Al EVENT patterns are
implicitly qualified with “active TRUE” meaning that they only fire when the event is
active. The user is free to qualify patterns with “active TRUE” to match active events,
“active FALSE” to match inactive events, or to leave the value of “active” unbound,
which will match both active and inactive events. The retraction pattern for a persistent
event sets “active := FALSE” after asserting any temporal constraints specified in the
“INACTIVE” clause.

7.2 Temporal reasoning in rules

Temporal assertions may have wide-ranging consequences. Depending on constraints,
changes in the relationship between events may propagate to affect relationships between
other events.

This is significant in rules because patterns that match events and may include tem-
poral expressions. Whenever the truth of a temporal expression may have changed, such
rules need to be reevaluated for satisfiability.

Currently, SDL employs a “naive” strategy for managing temporal change. Whenever
a temporal assertion occurs SDL reevaluates any rules containing events. It does this by
propagating a “remove” token followed by an “add” token for each event.

13

DSTO-GD-0342

14

A better approach would be to compute a new solution for each STP, and then compare
the old and new solutions to determine which events actually have changed relationships
with other events. These events would then be “removed” under the old solution and
“added” under the new solution.

8 Standard Packages

8.1 The Visualisation System

SDL includes a set of Java modules to manage the visualisation of spatial, temporal
and symbolic information. The following definitions are built in to the SDL type system.

Any = RECORD tag : STRING END;

PROCEDURE (a : Any) Handle(msg : Message) : BOOLEAN;
BEGIN

RETURN FALSE;
END Handle;

Object = RECORD (Any) END;
Message = RECORD (Object) END;

Type ANY is a root type for all record types (user and system). Type Object is a root
type for all user-defined record types. Objects of type Message are sent by the system to
enquire how to handle visualisation of user types. An object defines its visualisation by
overriding the Handle method defined in type Any.

The visualisation system uses layers to define what is displayed in a view. A layer may
be simultaneously displayed in multiple views. Layers use a notification mechanism to
inform views that their contents have changed. In the MVC paradigm, layers are models.

The important categories of layers are described below.

' SimpleLayer
SimpleObjectLayer
HypothesisLayer
SpatialObjectLayer
SpatialImageLayer

SimpleObjectLayers encapsulate a set of objects. The contents of the object set may be
managed using the AddObject and RemoveObject methods. SpatiallmageLayers display
images in a spatial display. SpatialObjectLayers display spatial attributes geometrically
using lines and points. HypothesisLayers define sets of hypotheses to be displayed within
the visualisation system.

Views expect to be supplied with particular kinds of layers to define their contents.

palialiew

a0

20

10

00

S P

0.0 1.0

PO Bo

Figure 1: Sample spatial display comprising two layers.

DSTO-GD-0342

View Expects Via

SpatialView | SpatialLayer AddLayer / RemoveLayer
TemporalView | SimpleObjectLayer | SetLayer

ObjectView Object SetObject

MainView HypothesisLayer SetHypotheses

Views are exposed to SDL via restricted interfaces, rather than complete Java classes.
This keeps the interfaces simple, and avoids SDL having to import definitions for classes
used to implement the views (eg. javax.swing).

8.1.1 SDL.SpatialViewInterface

A spatial view may be created by one of the following:

view :
view :

System.NewSpatialView();
System.MainView() .getSpatialView();

The first form creates an spatial view in its own window. The second form returns the
spatial view component of the main view (see 8.1.3).

Figure 1 shows a sample spatial view composed of a number of layers. A layer has a
user-defined identifier, and is associated with a set of objects to be included in the display.
Objects within a layer define their own interpretation in terms of spatial primitives (ie.
lines and points). An “active” layer is one in which the objects may be manipulated using
the mouse pointer. SpatialViewInterface exposes the following Java functions:

15

DSTO-GD-0342

interface SpatialViewInterface {
public void AddLayer(Spatiallayer 1);
public void RemoveLayer(SpatialLayer 1) throws RunTimeError;
public void SetRect(double x1, double yi, double x2, double y2);
}

AddLayer and RemoveLayer control which layers are shown in the view. SetRect
defines the bounding box for the portion of the layer to be displayed.

The following example illustrates how to construct a spatial display with two layers.
The constants position and trajectory define identifiers which the system will use to
refer to the layers. The example defines an inactive position layer, and an active trajectory
layer using a custom colour (semi-opaque white).

TYPE
ObjectLayer = JAVA SDL.SpatialObjectLayer;
SpatialView = JAVA SDL.SpatialViewInterface;
ImageLayer = JAVA SDL.Spatiallmagelayer;
Colour = JAVA java.awt.Color;

CONST
position = 0;
trajectory = 1;

VAR
layerTrajectory, layerPosition : ObjectLayer;

BEGIN
layerPosition := NEW ObjectLayer(position);
layerTrajectory := NEW ObjectLayer(trajectory, TRUE,
NEW Colour(255, 255, 255, 128));

view := System.NewSpatialView();
view.AddLayer(layerPosition) ;
view.AddLayer(layerTrajectory) ;

The functions AddObject and RemoveObject can be used to control which objects are
displayed in each layer. For example, the following adds all instances of Robot to all layers:

FOREACH 1 IN { layerPosition, layerTrajectory} DO
FOREACH r IN Robot DO
1.AddObject(r)
END
END

When the state of an object changes, its representation on a layer may be updated by
calling AddObject again.

16

DSTO-GD-0342

The following messages are used by the system to define the representation of objects
in a spatial display.

SpatialGet = RECORD (Message)
layer : INTEGER;
result : SET OF SPATIAL
END;

SpatialPut = RECORD (Message)
layer : INTEGER;
old, new : Spatial;

END;

The SpatialGet message is sent to an object to determine its representation on a
layer. The layer field defines in which layer the system is requesting. The result field
is set by the handler procedure to a set of spatial objects (eg. lines and points) that are
to appear on the display. The handler returns TRUE to indicate that the result has been
defined. :

The SpatialPut message is sent to an object when a user manipulates its position on
an active spatial layer. The layer field defines which layer the manipulation has occurred.
The o1d field defines an element of the object’s representation (ie. a member of the result
set returned in a SpatialGet message) that has been manipulated. The new field defines
the new value for that element.

The following example illustrates how this works. The representation of a Robot
depends on which layer is displayed. On the position layer, its position (a point) is
displayed. On the trajectory layer, its path (a line) is displayed. If the user modifies
the trajectory, the path attribute is set to the new trajectory, and the internal state of
the object is updated. Then its representation is refreshed on that layer.

Robot = RECORD

path : LINE; (* looped trajectory for robot #*)
pos : POINT; (* current location of robot *)
END;

PROCEDURE (r : Robot) Handle(msg : Message) : BOOLEAN;
BEGIN
WITH
| msg : SpatialGet DO
IF msg.layer = position THEN
msg.result := { r.pos }
ELSIF msg.layer = trajectory THEN
msg.result := { r.path }
ELSE
RETURN FALSE
END;

17

DSTO-GD-0342

18

| msg : SpatialPut DO
IF msg.layer = trajectory THEN
r.path := msg.new{LINE};
r.Update();
layerTrajectory.AddObject (r)
END;
END;
RETURN TRUE
END Handle;

8.1.2 SDL.TemporalVigwInterface

A temporal view may be created by one of the following:

view :
view :

System.NewTemporalView() ;
System.MainView() .getTemporalView();

The first form creates a temporal view in its own window. The second form returns
the temporal view component of the main view (see 8.1.3).

A temporal view is composed of a single of layer. TemporalViewInterface exposes
the following Java functions:

interface TemporalViewInterface {
public void SetRect(double x1, double yi, double x2, double y2);
public void SetLayer(SimpleObjectLayer 1);

}

SetLayer defines the layer to be displayed in the view. SetRect defines the bounding
box for the portion of the layer to be displayed. In the temporal view,-only y1 and y2 are
significant. They indicate the earliest and latest times to be displayed.

Figure 2 shows a sample temporal display. In a temporal display, times are shown
relative to a reference point. Each point in time appears as a line connecting two dots.
This represents the earliest and latest possible times for the point compared to the reference
point. An INSTANT appears on the display as a single point. An INTERVAL appears as a
rectangular track, with the start point to the top left, and the end point to the bottom
right. By default, the reference point is the origin (@ 0 SECONDS). Clicking on a point
while depressing the SHIFT key causes the indicate point to be used as the reference point
for the display.

The following example illustrates how to create events and display them in a temporal
view.

TYPE
ObjectLayer = JAVA SDL.SimpleObjectLayer;

DSTO-GD-0342

=3 T emporal View | _|O

(@
=1

apruwif

—e
*—e
I

Hemuuo(

oud
Buegq

snguyo(

' 0°00083 U'Ol'lﬁtq O‘UOUQq U‘UDOSZ' U‘UOUtﬂ

Figure 2: Sample temporal display showing three intervals and two instants.

TemporalView = JAVA SDL.TemporalViewInterface;
Interval = INTERVAL RECORD END;

VAR
johnWalk, johnBus, jimRide : Interval;
layer : ObjectLayer;
view : TemporalView;

(* John leaves for work between 7:00 and 7:10. It takes him 5 to 10 minutes
to walk to the bus station. He waits between 5 to 10 minutes, and then
catches the bus to work taking 20 to 30 minutes. Jim rides his bike to
work, leaving between 6:30 and 6:45, and taking 40 to 50 minutes. *)

BEGIN
johnWalk := NEW Interval(:tag "johnWalk");
johnBus := NEW Interval(:tag "johnBus");
jimRide := NEW Interval(:tag "jimRide");

TEMPORAL
johnWalk STARTS BETWEEN Q7:00 HOURS AND @7:10 HOURS
ALSO HAS DURATION RANGE 5 TO 10 MINUTES;
johnBus STARTS RANGE 5 TO 10 MINUTES AFTER johnWalk ENDS
ALSO HAS DURATION RANGE 20 TO 30 MINUTES;
jimRide STARTS BETWEEN @6:30 HOURS AND ©6:45 HOURS
ALSO HAS DURATION RANGE 40 TO 50 MINUTES;
END;

layer := NEW ObjectLayer();

19

DSTO-GD-0342

FOREACH i IN Interval DO layer.AddObject(i) END;

view := System.MainView().getTemporalView();
view.SetLayer (layer);

8.1.3 SDL.MainViewInterface

The SDL main view is a composite view for visualising temporal and spatial data,
along with symbolic information. A sample display is shown in Figure 3. The display
consists of the following major parts:

A Spatial Display (top left) shows one or more layers of spatial information (see 8.1.1).
A Temporal Display (top right) shows a layer of temporal information (see 8.1.2).

An Object Display (bottom centre) shows symbolic information about selected objects.
As the user clicks to select objects from the display, the attributes of these objects
are shown in the object display. Attributes referring to other objects appear as
“hyper-links” which can also be selected.

A hypothesis selector (top centre) allows the user to be presented with a number of
relevant hypotheses which they may choose to display. Each hypothesis acts as a
filter on the temporal and spatial displays, restricting the display to those objects in
the selected hypothesis. Alternatively, the user may select “all hypotheses” or “no
hypothesis”.

A navigation tool-bar (top centre) allows the user to step forward and back along a
sequence of visited objects. It also controls the depth to which object structures are
expanded in the object display.

The system normally has a single main view, which is instantiated using:
view := System.MainView();

This creates the main view if not already open. MainViewInterface defines the fol-
lowing:

interface MainViewInterface {
public void SetHypotheses(HypothesisLayer layer);
public SpatialViewInterface getSpatialView();
public TemporalViewInterface getTemporalView();
public ObjectViewInterface getObjectView();
public NavigatorInterface getNavigator();

20

DSTO-GD-0342

iew

Back[f%’arf,rs!;?z{i,f![Expand I[Comractl

Pl e * I: .I
6.4 2 B AT :
C 8 S |3
- = [} w
149 b *l®) *n
ol | Bl & 2
% o il P4
b4 ,I}
=
t@
> 3
S
(1]
Range : Range?
K Range?
— $begin SDL TemporalGraph$Node@7ac7cfl
— $end . 8DL.TemporalGraph§Node@54100e
[— active false
& from Particle1
— mass 1.0
— paosition [-0.27156677139273766, 3.4314525324628184, 0.0]
— velocity [0.005818575269437549, -6.369447476527825E-4, 0.0]
— force . [7.83351684692884E-5, -2.5644544159141108E-5, 0.0]
— tfag "Patticle1”
1 ®to Particle3
1| I mass 1.0 :
[— position [0.33623190850950174, -0.022964977806359917, 0.0]
1| I~ velocity [0.0015459352387352109, 0.002042416341264153, 0.0
LI~ force [67628304421890654E-5.1 016265020605632E-4.0.01 __

Figure 3: Sample main view showing spatial display (top left), temporal display (top right)
and object display (bottom,).

21

DSTO-GD-0342

22

An object of type JAVA SDL.HypothesisLayer defines the hypotheses to be considered
for display. In practice, there may be hypotheses that are not relevant for display, so it is
not appropriate to display all hypotheses in the system. The hypothesis layer allows only
those relevant to the scenario to be displayed.

The SDL system uses an internal Hypothesis type to represent each hypothesis. These
are generated using the HYPOTHESIS statement. Hypotheses may be used in the follow-
ing ways:

e A Hypothesis may be assigned to an attribute of an object. Hypothetical objects
must be assigned a hypotheses as they are instantiated.

¢ A Hypothesis may be used to qualify a HYPOTHESIS or TEMPORAL statement.

o A Hypothesis may be deleted using DELETE. This removes the hypothesis and all
associated hypothetical objects.

Within SDL, any user data associated with a hypothesis must be stored in a user-
defined type. Typically, this is done as follows:

TYPE ‘
MyHypothesis = RECORD
hypothesis : Hypothesis;
. user-defined data here
END;

The objects defined in a hypothesis layer are user hypothesis objects, not system
Hypothesis objects. The system determines the displayed name for a hypothesis using
the HypothesisGet message:

HypothesisGet = RECORD (Message)
name : STRING;
hypothesis : Hypothesis;

END

These messages are sent to all objects in the view’s hypothesis layer. The user must
return a system Hypothesis object, and a displayed name for the hypothesis. For example:

PROCEDURE (m : MyHypothesis) Handle (msg : Message) : BOOLEAN;
BEGIN '
WITH msg : HypothesisGet DO
msg.name := m.tag;
msg.hypothesis := m.hypothesis;
RETURN TRUE;
ELSE
RETURN FALSE;
END;
END Handle;

DSTO-GD-0342

Note that user hypotheses may also have spatial and temporal representations. In this
case, Handle would respond to these messages as well.

TYPE
HypothesisLayer = JAVA SDL.HypothesisLayer;

VAR
layerHypotheses : HypothesisLayer;

(* Create Hypothesis layer for Main View *)
layerHypotheses := NEW HypothesisLayer();
System.MainView() . SetHypotheses(layerHypotheses);

(* Create user object corresponding to system hypothesis *)
HYPOTHESIS h
m := MyHypothesis(:hypothesis h, ...);

(* Add the new hypothesis to the display. *)
layerHypothesis.AddObject (m) ;
END;

8.1.4 SDL.NavigatorInterface

A SDL.NavigatorInterface defines how the system handles objects and hypothesis
in the main view. These interfaces are created by the system.

interface NavigatorInterface {
static final int ShowMatch = 0;
static final int ShowAll = 1;
static final int ShowNone = 2;

boolean Link(Object target);
boolean Included(Object target);
void SetMode(int mode, Hypothesis hypothesis);

The procedure SetMode defines how the system handles displayed hypotheses. If
mode=ShowA11l, all hypotheses in the hypothesis layer will be displayed. If mode=ShowNone,
no hypotheses will be displayed. If mode=ShowMatch, the hypothesis corresponding to
hypothesis will be selected for display.

The procedure Link causes the object view to display the the target object. The
object is placed in the navigation list and is accessible via forward and back commands.

23

DSTO-GD-0342

24

The procedure Included returns TRUE if and only if the target object is displayable
with the current settings.

The SDL.NavigatorInterface functions are intended for use by the system, but may
be also called with care by the user.

8.1.5 SDL.ObjectViewInterface

The SDL.ObjectViewInterface defines the interface to the object viewer. This viewer
displays the values of attributes of objects. The user defines the displayed object by clicking
on objects in the spatial and temporal displays, or clicking on references from other objects
in the object display. The user may navigate back and forward using web-browser like
navigation controls. It is also possible to control the depth to which object references are
expanded in the object display using on-screen controls.

interface ObjectViewInterface {
public void SetObject(Object o, int level);
}

The procedure SetObject causes the object view to display object o, expanding object
references to a depth of level.

9 Notification

SDL includes a notification mechanism to manage interaction with other software
systems. A client system may register interest in the following events:

e Creation of a new instance of a record type.

e Deletion of an instance of a record type.

e Changes to particular attributes of a record.

Registration is achieved using request commands (see 9.2). Each command consists
of a predicate where the command arguments are enclosed in parentheses. Commands
are parsed and dispatched by SDL using a SDL.NotifyParser, which implements the
SDL.ForeignQuery interface:

interface ForeignQuery {
public String Query(String query);
}

Commands are passed to the ForeignQuery handler as strings, and results are returned
as strings. Normally, the result of a query is either ’Success’ (), or ’Error’ (’reason’).

The notification process normally works as follows:

DSTO-GD-0342

e After reaching a significant point in its deliberation, the SDL process calls System.Notify

to inform the client process of the current state of the data base.
e The SDL process generates notification messages which are forwarded to the client.

e The SDL process services queries from the client. Typically, having been notified
about a new object, the client will want to register notifications for particular at-
tributes, or to request the current values of attributes. The client may also call SDL
procedures to register changes in its own state (eg. its intentions) which may affect
the situation assessment.

e When the SDL process receives the ’done’ () command, it returns from System.Notify

and deliberation resumes again.

Internally, the system implements foreign notification handlers using the following
interface: "

interface ForeignNotify {
public void Notify(String message);
public void Answer(ForeignQuery query);

}

The Notify procedure is used to send notifications to the client. The Answer procedure
is used to handle queries from the client. Two implementations of ForeignNotify are
available. SDL.TestNotify implements a dummy notifier that simply outputs notification
messages to System.out. SDL.DMarsNotify implements a notification agent within the
DMars system using a JNI interface to the vendor’s messaging APIL. This is currently
experimental and has not been completely implemented.

9.1 Representation of SDL values

The notification system has been developed primarily to interface to DMars. A re-
quirement for such systems is to transform the hierarchical SDL data structure into a
set of relations or predicates. SDL employs object “tags” to indicate a reference to an
object. A tag uniquely identifies an object within the SDL system. Tags are generated
automatically by the system, or may be assigned by the user.

Table 1 outlines the predicate representations for SDL values. Scalar values (INTE-
GER, REAL, STRING, BOOLEAN) are represented using the ’Base’ predicate. The
value NIL is represented by the ’Nil’ predicate. Sets and sequences have their element
values enumerated within an ’Array’ predicate. Potential values use the ’Potential’
predicate to enclose a list of ’Element’ predicates, one for each association between value
and certainty.

Records are represented in two ways. The long form uses the *Record’ predicate to
enclose a list of *Attribute’ predicates. Each ’Attribute’ specifies the attribute name,
and the value for the named attribute. The short form uses just the Object’ predicate
to specify the tag for the object. Normally, the outermost record is mapped to the long
form, with any embedded references to records using the short form.

25

DSTO-GD-0342

26

SDL Value Predicate mapping

NIL ‘ ’Nil’ ()

TRUE ’Base’ (true)

42 'Base’ (42)

4.2 ’Base’(4.2)

"A String" ’Base’ (’A String’)

{1, 2, 3} *Array’ (’Base’(3),’Base’(2),’Base’ (1))
{1, 2, 31 ’Array’ (’Base’(1),’Base’(2),’Base’(3))

{{1 CF 0.1, 2 CF 0.2}} ’Potential’ (’Element’(’Base’(2),’Base’(0.2)),
’Element’ (’Base’ (1), ’Base’(0.1)))

NEW A(:i 1, :tag "A22") | ’Record(’Attribute’(’i’ ,»’Base’ (1)),
’Attribute’(’tag’,’Base’(’A227)))
NEW A(:i 1, :tag "A22") ’Object (’A22°)

Table 1: Mappings for SDL values

9.2 Notification Requests

Notification requests have the syntax specified in Table 2. For most queries, the result
is either ’Success’ () or ’Error’ (’reason’), where ’reason’ is an explanation of the
error context.

The RequestNew command requests notification for new instances of the named class.
For example:

’RequestNew’ (’Notify.A?)

will cause new instances of the class Notify.A to be reported. Notifications have the
form:

’NotifyNew’ (RecordType ,Recordname)
’NotifyDelete’ (RecordType,Recordname)

For example, the message:
’NotifyNew’(’A’,’A227)

means that there is a new instance of class A with tag A223.

A number of commands exist to request information about attributes of objects. These
employ the RecordSpec construct, which names the attributes of an object. In its simplest
form, a RecordSpec is simply an object tag, followed by a list of attribute names separated
by commas. For example:

3Note that SDL does not currently report the module in which a type is defined, so there is a potential
ambiguity if types of the same name occur in different modules

DSTO-GD-0342

Integer = ["-"] Digit { Digit } .
Real = Integer "." {Digit} ["E" Integer]
String = Letter { Letter | Digit } .

Quote = "' .
QuotedString = Quote String Quote .

Qualldent = Quote String "." String Quote .

ClassName = Qualldent .

RecordName = QuotedString .

AttributeSpec = Quote String { "." String } [“:" String] Quote .
RecordSpec = RecordName { "," AttributeSpec } .

ProcName = Qualldent .

Value = "’" String "’" | Integer | Real .
CallArguments = ProcName { "," [":" String] Value } .

Command =

" RequestNew’" "(" ClassName ")"
"’RequestCurrent’" "(" RecordSpec ")"
"’RequestChangeSet’" " (" RecordSpec ")"
"RequestChangeRemove’" " (" RecordSpec “)"
")Call’" "(" CallArguments ")"

Table 2: Syntaz of Notification requests

27

DSTO-GD-0342
)A22)’)i}’)j)

means attributes i and j of the object with tag A22.

SDL allows a collection of objects to be viewed as an aggregate object. This helps
to avoid the number of object references that must be exchanged between SDL and the
client. In the AttributeSpec definition above, an arbitrary number of indirections may
be introduced together with an attribute alias.

TYPE
B = RECORD
i : INTEGER;
END;

A = RECORD
i : INTEGER;
b : B;

END;

In the above type definition, field b of type A refers to an object of type B. If 422 is
the tag of an object of type A, then the RecordSpec:

’4227,°b.i:bi’
means attribute i of the object referenced by attribute b of the object with tag A22,

referred to by the alias bi.

The command ’RequestCurrent’ generates an immediate notification of the specified
attributes of an object. Note that the attribute values are returned in a notification mes-

sage, not in the result of the request command. The general form for attribute notifications
is:

’AttributeValue’ (RecordType,Re cordTag,AttributeName,Value)

where RecordType is the name of the record’s type, RecordTag is the record’s tag,

AttributeName is the name or alias of the attribute, and Value is the representation of
the value of the attribute. For example:

’AttributeValue’ (’A’,’a’,’i’, ’Base’ (2))
’AttributeValue’(’A’,’a’,’bi’, ’Base’(3))

The command ’RequestChangeSet’ requests notifications of changes to the specified
attributes of an object. The command ’RequestChangeRemove’ cancels notifications of
changes to the specified attributes. Example:

’RequestChangeSet’(’a’,’i’,’b.i:bi?)

28

DSTO-GD-0342

In this example, the client requests notification for attribute i of object a, and attribute
i of the object referenced by attribute b of object a using the alias bi. This means that
changes to the referenced object are treated as changes to the referring object.

The command ’Call’ calls a procedure in a SDL module, passing a list of arguments.
Currently, only STRING, INTEGER, and REAL argument types are handled by the
notification parser. The argument list must match the formal parameter types specified
in the SDL procedure definition.

Unlike other commands, the ’Call’ command returns a result when successful. For
example,

’Success’ (’Base’ (1))

indicates that the procedure call returned the value 1. The result ’Success’ (’Nil’ ())
means either the procedure returned the value NIL, or the procedure did not return a value.

10 Example-Submarine Situation Assessment

10.1 Overview

This work was performed to gain a better understanding of what takes place during
a submarine situation assessment. Submarine situation assessment is a process that sub-
mariners perform to assess the current situation. Situation assessment is done by a team
of submariners in loose hierarchical fashion. The final authority rests with the comman-
der. The focus of the current system is the assessment performed by the commander.
The task is complicated by the need to remain covert. The strength of the submarine
has always been its element of suprise. To achieve this, the submarine’s primary sensors
are the passive sonar which listens to sound emitted by other vessels, ESM (Electronic
Support Measures) which monitors electro-magnetic emission, and the periscope which
allows an operator to see other vessels. Being passive sensors they are especially prone
to environmental effects, and conditions of the emitting source. This greatly increases
uncertainty in the gathered information.

Re-association occurs when a lost contact is associated with a new contact. A contact
occurs when a sensor indicates the presence of an entity (natural or man-made). Re-
association is a process prone to error. A contact becomes lost when none of the sensors
on board can detect it. Multiple hypotheses are used to allow the operator to re-associate
a new contact with a lost contact. The hypothesis with the lost contact is “clone”. In the
clone hypothesis the free contact is re-associated with the new contact. In the original
hypothesis a new entity of unknown classification is created and is associated with the new
contact. Each hypothesis is allowed to run until new evidence eliminates the hypothesis.
The deductions about the entities in a hypothesis can take place within a hypothesis. This
provides an interpretation of the situation based on a particular hypothesis.

29

DSTO-GD-0342

30

10.2 Knowledge base

Information about opponent capabilities and equipment help in identifying a vessel, and
deciding the threat a system poses. Information about opponents was encoded using an
object-oriented knowledge structure as shown in Figure 4. The hierarchical knowledge base
is broken up into three main branches. Two branches encompass the sub-systems (weapons
and sensors) that can be on board a vessel. The remaining branch is a decomposition of
various types of vessel. Vessels will contain sets of sub-systems. This structure allows us
to trace which vessel contains a specific sub-system. Finding out which systems exist on
a particular entity will tell us the type of vessel the entity is. This information is static in
nature.

PROCEDURE possibleVeh(ss: SENSOR): SET OF VEHICLE;
VAR
vehList : SET OF VEHICLE;
BEGIN
vehList := FROM veh: VEHICLE
WHERE ss IN veh.Sensor
SELECT veh END;

RETURN vehList;
END possibleVeh;

Other information is temporal in nature. Sensory information is always temporal
because the information is only valid at the time the information was extracted from the
sensor. Action performed by the submarine is also temporal in nature. For instance, the
fact that a submarine is making a course change is only valid at the time the action is
being taken. The structure for these items information is shown in Figure 5. Note that
sensory readings are declared as “PERSISTENT”. That is, the event object is maintained
in the data base but marked “inactive” which means that it no longer matches patterns
in rules. History of the event remains for matching temporal constraint.

10.3 Rule base
10.3.1 Reasoning with contacts

These rules deal with making assessments using given sensory information without
assuming any specific classification. They make use of temporal and non-temporal data.
An example such a rule is :

RULE MovingLeft

EVENT
MOVINGLEFT {contact <C> }

WHEN .
BEARINGRATE cutl { contact <C> active TRUE rate <ratel> : ratel < -0.015 } &
~ BEARINGRATE cut2 { contact <C> active FALSE rate <rate2>

! cutlfcut2: rate2 > -0.015 :TEMPORAL cut2 HAPPENS WITHIN 10 MINUTES
OF cutl HAPPENS; END}

DSTO-GD-0342

PHYSICAL
ENTITY
Maker
WEAPON SENSOR VEHICLE
SYSTEM Role Set of Sensor
Target Length
MaxRange Propulsion
Speed
GradedTargetSize
GradedEffectiveness . PASSIVE - ACTIVE
SENSOR SENSOR
: SHIP
- 5 Purpose
MISSILE ; TORPEDO [SurfaceDisplacement
: SurfaceAccelerationClass
SurfacedQuietness
; SurfacedEchoDamping
PASSIVE - ACTIVE SONAR SurfaceManeuverabilityClass
SONAR [ActiveSonarRange BridgeHeight
PassiveSonarRng PActiveSonarSensitivity MaxSurfacedSpeed
tiveF: EffectiveFreq Range
Fﬁcc iveFreq b NumOfShaft
NumOfBlade

SUBMARINE

SubmergedAccelerationClass
SubmergedDisplacement
SubmergedQuietness
SubmergedEchoDamping
SubmergedManeuverabililityClass
MaxSubmergedSpeed

Figure 4: Structure for storing background information about vessels of interest.

31

DSTO-GD-0342

32

CONTACT
sonarsnr: SNRLEVEL OBSERVATION
heldon: Set of OWN (PERSISTENT INSTANT)
SENSOR -
type: POTENTIAL contact: CONTACT
CONTACTTYPE
Status: Enum
BEARING CUT BEARING RATE} VISUAL CUT RANGE CUT TMA CUT
Bearing Rate rangelbeyond vis. Range Range
RelativeBearing mg. Course
Speed
Bearing

Figure 5: Structure for storing sensory information.

ACTIVE

STARTS WITHIN 10 MINUTES OF cutl HAPPENS ALSO STARTS BEFORE cutl HAPPENS
INACTIVE

ENDS WITHIN 10 MINUTES OF cutl HAPPENS ALSO ENDS BEFORE cutl HAPPENS
END MovinglLeft;

This rule records the period in which bearing rate (rate and direction the bearing was
changing) of the contact was noticably moving towards the left hand side. It is an event
rule that creates a “MOVINGLEFT” instance when the bearing rate indicates the contact
is noticably moving towards the left, and no contrary evidence is present in the last 10
minutes. The instance is set to have started 10 minute earlier. This rule remains active
until a bearing rate change to not left. The instance ceases to be true sometime within 10
minutes prior to the contrary evidence.

10.3.2 Reasoning within hypothesis

Rules and procedures primarily exist for generating conclusions made about entities.
They access information about the entities, their associated contact, and background
knowledge. Any conclusions they make are embedded within the hypothesis. Take for
instance this rule:

RULE FROMRANGEOFDAY

IF ENTITY e {hypothesis <H> classification <class> curContact<trk> } &
Self .CONTACT trk {sensor <<ss>>} &
Self.OWNSONAR ss{standardrange <srngi>} &

DSTO-GD-0342

Self .BEARINGCUT brg {contact<trk> bearing <angle>} &
Self .RANGEOFTHEDAY rl {sensor <ss> type <class> range <maxrng>} &
“ (Self.TRACK trk {heldon <<ss2>> :ss2 IS Self.OWNSONAR :ss2 # ss} &
Self .RANGEOFTHEDAY {sensor <ss2> type <class> range <rngi> :rngl < maxrng})&
Self .OWNSENSOR ss3 {} &
Self .OWNSONAR ss3 {coverage <<sector>> standardrange<srng2> :srngl # srng2
:sector.enclose(angle) :NOT (ss3 IN trk.semsor)} &
Self .RANGEOFTHEDAY {sensor <ss3> type <class> minrange <minrng>} &
~ (Self.OWNSENSOR ss4 {} &
Self .OWNSONAR ss4 {coverage <<sector>> standardrange<srng3> :srngl # srng3
:sector.enclose(angle) :NOT (ss4 IN trk.semsor)} &
Self .RANGEOFTHEDAY {sensor <ss4> type <class> minrange <rng2>:rng2 > minrng})&
~ SENSORRANGE {hypothesis <H> source<e> min <minrng> max <maxrng>}
THEN
TEMPORAL NEW SENSORRANGE (:hypothesis H, :entity e, :min minrng, :max maxrng,
:difference (maxrng - minrng)) HAPPENS AT brg HAPPENS; END;
END FROMRANGEQFDAY1;

It accesses information about the entity classification, the sensors the contact was held
on, and background information about sonar capabilities of own submarine. Using that,
it deduces an expected band of ranges the entity should be within. The conclusion is
recorded in a hypothetical record placed in the same hypothesis as the referenced entity.

10.4 Creating and terminating hypothesis

Hypotheses are created and destroyed as we see fit. This is achieved by a set of rules
and procedures to govern the creation and destruction of hypotheses. One way hypotheses
are created is when a free entity is re-associated with a new contact. The procedure below
shows how this is done.

PROCEDURE CreateEntity(c: Self.CONTACT);
VAR
h : MYHYPOTHESIS;
elist : SET OF ENTITY;
entity : ENTITY;
likelyclass : SET OF NavalKB.CONTACTTYPE;
class : NavalKB.CONTACTTYPE;
detail : STRING;
BEGIN

(* Find all free entities of all hypotheses *)
elist := FROM e :ENTITY WHERE e.status = FREE SELECT e END;
FOREACH entity IN elist DO
IF passConditions(entity, c¢) THEN
(* Duplicate hypothesis of entity *)
HYPOTHESIS hclone FROM entity.hypothesis
h := NEW MYHYPOTHESIS(:h hclone, :del FALSE);
(* Associate free entity in duplicate hypothesis to new contact. *)

UPDATE
MAP(hclone, entity).originalContact := entity.curContact;
MAP(hclone, entity).curContact := c;
MAP(hclone, entity).status := REASSOCIATED;
END;
END;

END;
END;

(* Create an unknown entity for each hypothesis without one associated with contact *)
FOREACH h IN MYHYPOTHESIS DO

33

DSTO-GD-0342

34

IF h.del = FALSE THEN
elist := FROM e :ENTITY WHERE e.hypothesis = h.h, e.curContact = ¢ SELECT e END;
IF elist = {} THEN
(* Create an unknown entity. *)
entity := NEW ENTITY (:hypothesis h.h, :originalContact c, :curContact c,
:range UNKNOWN, :threat 3, :classification NavalKB.UNKNOWN
» :class NEW CLASSVARIANT (:unknown), :status CREATED,
:path {], :lpath {}, :pospath {});
END;
END;
END;
END CreateEntity;

The destruction of these hypotheses is governed by a set of constraints. When a
hypothesis violates one of these constraints, it is set as invalid and can be eliminated.
These rules play the very important role of containing the number of hypotheses. Three
such constraints have been established. They are:

1. Type mismatch: Mismatch between entity type and dominant type of the associated
track. For instance, where a submarine entity was re-associated with a contact that
was later classified as a warship.

2. Spatial improbability: New information indicates the likely position of the entity, at
time t2. We also have the likely position of the entity prior to being lost, at time t1.
This rule states the entity in question must be able to reach the new position from
the old position in the time between t1 and t2.

3. Multiple submarines: The risk of friendly fire and collision is very high if two sub-
marines are deployed in close proximity. Thus, the likelihood of two submarines
being detected in close proximity is remote. A hypothesis where two submarine
entities exist in close proximity is invalid.

An example of one of these constraints is shown below.

RULE KillBadAssociation
IF ENTITY e {hypothesis <H> classification <class> curContact <trk>
status REASSOCIATED} &
Self.CONTACT trk {type <<etype>> :NOT (NavalKB.UNKNOWN IN
LIKELY(trk.type)):NOT (class IN LIKELY(trk.type))} &
MYHYPOTHESIS myh {h <H>}
THEN
PRINTLN "Bad association.®;
UPDATE
DELETE myh;
DELETE H;
END;
END KillBadAssociation;

Note the procedure always creates a new unknown entity in each of the original hy-
potheses, since the new contact could potentially be a new entity. Classification infor-
mation arriving determines the entity classification. The classification can change again
as better information comes in. It is desirable to use the new classification information
instead of waiting to make sure the contact classification will not change again. To allow
this, a hypothesis is formed when the associated contact dominant classification changes.
The rules governing creation and destruction of these hypotheses are shown below.

DSTO-GD-0342

RULE SplitUnknown
IF ENTITY e {hypothesis <H> classification <class> status <statel>
curContact <trk> :statel = CREATED: class = NavalKB.UNKNOWN} &
Self.CONTACT trk { type <<etype>> :etype IN LIKELY(trk.type)
:NOT (NavalKB.UNKNOWN IN LIKELY(trk.type)): NOT(etype IN e.morphTo)}

THEN

classificationSplit(e, etype); (* create new hypothesis %)

e.morphTo := e.morphTo + {etype};
END SplitUnknown;

RULE KillInvalidClassEntity
IF Self.CONTACT trk { status <state> : (state = Self.CEASE) OR (state = Self.LOST)} &
ENTITY e {hypothesis <H> classification <class> curContact <trk> originalContact <trk>
classification <class> : NOT (class IN LIKELY (trk.type))} &
MYHYPOTHESIS myh {h <H>}
THEN
UPDATE
myh.del := TRUE;
lhypot.RemoveObject(myh);
1spatial.UpdateAll();
DELETE H;
DELETE myh;
END;
END KillInvalidClassEntity;

The first rule creates a new hypothesis with an entity equal to the contact’s current
dominant classification. The second rule deletes the hypotheses where the entity classi-
fication does not match the contact dominant classification when the contact is lost. At
this point, no new information can arrive to alter the contact dominant classification.

10.5 Entering data into SAP

A set of procedures exist to form the interface to the SAP for this application. Infor-
mation is passed as arguments to these procedures. Calls to these procedures could be
from a simulation, or in our case from a script file containing an ordered sequence of these
procedure calls. The data for our script file was extracted from a submarine on submarine
exercise.

PROCEDURE newRangeCut(time:INTEGER; tag: STRING; rng:REAL);
VAR

cnct : CONTACT;

rangeset : SET OF RANGECUT;

range: RANGECUT;

BEGIN
FOREACH cnct IN CONTACT DO
(* Find contact with given tag *)
IF cnct.tag = tag THEN
(* Set previous RANGECUT for this contact to be inactive. *)
rangeset := FROM t:RANGECUT WHERE t.active = TRUE
, t.source = cnct SELECT t END;
FOREACH range IN rangeset DO range.active := FALSE; END;
(* Create new RANGECUT for this track. *)
TEMPORAL NEW RANGECUT (:source cnct, :ramge rng, :active TRUE)
HAPPENS AT @time SECONDS; END;
END; (* IF %) '
END; (* FOREACH #)
END newRangeCut;

35

DSTO-GD-0342

36

10.6 Situation snapshot

The set of graphical snapshots of the Submarine Situation Assessment application
illustrates how the multiple hypotheses work in practice. The first snapshot in Figure
6 shows only one hypothesis containing two free entities. Using previous information
it was able to give an indication of the whereabouts of these two entities. One of the

-entities is a warship and the other was a submarine. The next three snapshots are the

resultant hypotheses when a new contact was detected. The first interpretation of the
situation, shown in Figure 7, is that the new contact is the submarine previously lost.
The second interpretation, as shown in Figure 8, is that the new contact is the warship.
The final interpretation, as shown in Figure 9, is that the new contact is a previously
undetected entity. The final snapshot was taken when the new contact was later classified
as a submarine, shown in Figure 10. The result is that the hypothesis where the new
contact was the warship was eliminated. The hypothesis that the new contact is a new
unknown entity will be eliminated based on the rule KilllnvalidClassEntity described in
previous page. ’

11 Conclusion

SDL is a Situation Description Language intended for use in situation assessment
problems. SDL provides knowledge modelling and inference facilities for reasoning with
information.

SDL is a strongly typed language, like most imperative programming languages but
unlike many “artificial intelligence” languages. SDL programs are strictly checked during
a compilation phase which enables many semantic errors (such as type mismatch) to be
easily identified. SDL provides a rich declarative knowledge model together with pattern-
based forward-chaining inference.

The details presented here are important for users and implementors of the SDL system.
The examples demonstrate the potential usefulness of the system in complex tasks such
as submarine situation assessment.

DSTO-GD-0342

——{warstip
L3 ad .
{other sub: T ost when
logtwhan stop- —==s uw-u}
transmitting) .. .
e———
/
own sub)et— [~
40000
v . . ‘|lrllltlll B dauiihg 5O U 'l!lrﬂll'l L] vllijﬂ g
Y TS
T UTENINYE IR T Tl
— mpomesis SOLHypotiesis@505¢13
[onginaiContact E81
Hcucontact E81
[Bpan
[Pioan
[@sospan
[~ stous FREE"
— range UNKNOWN"
- weort 3
= classMcaton “WARSHP" :
H8 morphTo RS
'T_uu- CLASEVARWNT.3 iz

- (other sub,
00000 l
4/ New contact.)]
N !
bl (warship: ki
\Z temaln lost.) |]
'y \
o founbut) :
N \/,,_A
20000
Ane ToserT— e eyt bv- v i v

P
TYENTITY 48

ENNIYTE
— hypothesls BDLHypohesls@h22e
HB originaiContact 584
[cuConlact 599
18 o
s
[posoan
- stats. "REASSOCUTED"
[~ range FAR
- oot 1
[~ classcason BUF
[@momhTe
'T_am CLASSVARNT.0

Figure 7: Associate new contact as lost submarine.

37

DSTO-GD-0342

teat) View

ofx

[Aounctuting new castact SO% vs BITIY.AT. s WRSHPTENTITY.# ¢ v . r BmIvA S BNIVL 0. v
0
40008 / U
d
yd
raTShip: >
10000 8 i
oW ” —.
—]
N I St N e
-
(other sub: \ / B sy 4
0 ainloot-) -
ey
s
(owr{ sub)
=1
M T T
20000
v TORRT U N L.t ST mﬂ . 'mu v
TITY ENTITY. A7 - T "~
| SN ENTIYIST O ot . N
- oomesis 0L sapomesisg@ainent
)
[RewContst 390
[oy
te
"::‘
[~ ot REASSOCWTE
[~ ronge proeee
-~ tevat)
- cassicsen voRsIS”
19 mupnTe
tnes CUSIWAANT 3 -

Figure 8: Associate new track as lost warship.

38

Figure 9: Associate new track as new unknown entity.

DSTO-GD-0342

AN (=1 1|

EBY’ u ENTITY.A S84’ a8 ENTITY.1, = v

/stay re-asfociated.) 9
Iy %‘ — - I
¥ . (warship:
—~—]
000 » emain free.)
—— e
0000 — b ol 14—
(own sub) B £
. P o
i %
T——
. |
. — - 3
H
K4
S
26000 °
40000 | l
e~ | . muuuq ’mnn . YU i ‘lL‘I)llIlv J TUWD Ilv) ooo T . Dﬂﬂll | 00 U | . !
ENAPDIP INANGING : SNAPDEPTRANGING.O —
ERAFDEY v
hypomesis EDLHypothesisRb22s
Soegin SDLTamporalorash$tiods@2674b
3end SDLTemporalOraphsNode@4badc?
actor ENTITY.A8
EY “GNAPDEPTRANGINO.T"

Figure 10: New information remove warship as viable hypothesis.

References

. CLIPS ezpert system shell (n.d.) http://www.ghg.net/clips/CLIPS.html.

. Dechter, R., Meiri, I. & Pearl, J. (1991) Temporal constraint networks, Artificial Intel-
ligence 52, 61-95.

. Forgy, C. L. (1982) RETE: A fast algorithm for the many pattern / many object pattern
match problem, Artificial Intelligence 19, 17-37.

. Greenhill, S., Venkatesh, S., Pearce, A. & Ly, T. (2002) Representations and Pro-
cesses in Decision Modelling, Technical Report DSTO-GD-0318, DSTO, Melbourne,

Australia.

. Greenhill, S., Venkatesh, S., Pearce, A. & Ly, T. (2002) Situation Description Language,
Technical Report DSTO-GD-0342, DSTO, Melbourne, Australia.

. JESS The rule engine for the Java platform (n.d.) http://herzberg.ca.sandia.gov/jess/.

. Lee, H. S. & Schor, M. I. (1992) Match algorithms for generalized Rete networks,
Artificial Intelligence 54, 249-274.

39

DSTO-GD-0342

40

DISTRIBUTION LIST

Situation Description Language Implementation
S. Greenhill and S.Venkatesh and A. Pearce and T.C. Ly

Number of Copies
DEFENCE ORGANISATION
S&T Program
Chief Defence Scientist
FAS Science Policy
AS Science Corporate Management !
Director General Science Policy Development
Counsellor, Defence Science, London Doc Data Sht
Counsellor, Defence Science, Washington Doc Data Sht
Scientific Adviser to MRDC, Thailand Doc Data Sht
Scientific Adviser Joint 1
Navy Scientific Adviser Doc Data Sht
Scientific Adviser, Army Doc Data Sht
Air Force Scientific Adviser 1
Director Trials 1

Information Sciences Laboratory
Don Perugini, C2D, Edinburgh 1
Poh Lian Choong, C2D, Edinburgh

Systems Sciences Laboratory

Chief of Maritime Operation Division 1
Research Leader Combat Information Systems 1
Head Submarine Combat System 1
John Best, MOD, Edinburgh 1
Thanh Chi Ly, MOD, HMAS Stirling 1
Chris Davis, MOD, HMAS Stirling 1
Simon Goss, AOD, Fishermans Bend 1
DSTO Library and Archives
Library, Stirling 1
Library, Edinburgh 1
Australian Archives 1

Capability Systems Staff

Director General Maritime Development Doc Data Sht

Knowledge Staff

Director General Command, Control, Communications and Com-
puters (DGC4)

Army

ABCA National Standardisation Officer, Land Warfare Devel-
opment Sector, Puckapunyal
Intelligence Program

DGSTA, Defence Intelligence Organisation

Manager, Information Centre, Defence Intelligence Organisa-
tion
Defence Libraries

Library Manager, DLS-Canberra
Library Manager, DLS-Sydney West

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library
Hargrave Library, Monash University
Librarian, Flinders University
Curtin Library, Curtin University

School of Computing, Curtin University
Stewart Greenhill
Svetha Venkatesh

University of Melbourne

Adrian Pearce
OTHER ORGANISATIONS
National Library of Australia

NASA (Canberra)
AusInfo

INTERNATIONAL DEFENCE INFORMATION CENTRES

US Defense Technical Information Center
UK Defence Research Information Centre
Canada Defence Scientific Information Service

NZ Defence Information Centre
ABSTRACTING AND INFORMATION ORGANISATIONS

Library, Chemical Abstracts Reference Service

Doc Data Sht

1
Doc Data Sht

1

Doc Data Sht
1
1

_ = NN

Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US

Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS

Acquisitions Unit, Science Reference and Information Service,

UK
Library — Exchange Desk, National Institute of Standards and

Technology, US
SPARES

DSTO Edinburgh Library

Total number of copies:

49

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION | 1. CAVEAT/PRIVACY MARKING
DOCUMENT CONTROL DATA

2. TITLE 3. SECURITY CLASSIFICATION
Situation Description Language Implementation | Document (U)

Title (U)

Abstract (U)
4. AUTHORS 5. CORPORATE AUTHOR
S. Greenhill and S.Venkatesh and A. Pearce and | Systems Sciences Laboratory
T.C. Ly PO Box 1500

Edinburgh, South Australia, Australia 5111
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-GD-0342 012-486 General Document November, 2002
8. FILE NUMBER 9. TASK NUMBER 10. SPONSOR 11. No OF PAGES 12. No OF REFS
M9505/23/30 LRR 98/081 39 7
13. URL OF ELECTRONIC VERSION 14. RELEASE AUTHORITY
http://www.dsto.defence.gov.au/corporate/ Chief, Maritime Operations Division

reports/DSTO-GD-0342.pdf

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT
Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111 .

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS
No Limitations

18. DEFTEST DESCRIPTORS

Situation Awareness, Knowledge representa-
tion,Expert Systems,Java (Computer program
language)

19. ABSTRACT

SDL is a Situation Description Language intended for use in situation assessment problems. SDL
provides knowledge modelling and inference facilities for reasoning with information.

This document describes a portable implementation of SDL in Java. It provides information required
by a user of the system. Details include the operation of the compiler, the use of temporal knowledge
and inference, and use of the visualisation system. This report also provides implementation details
necessary for modifying or extending the system. A detailed example describes how the system was
used for submarine situation assessment.

Page classification: UNCLASSIFIED

